REPORT

Asia Submarine-cable Express (ASE) – Tseung Kwan O

Baseline Water Quality Monitoring Report (Zone A)

19 September 2012

Environmental Resources Management 16/F DCH Commercial Centre 25 Westlands Road

Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Asia Submarine-cable Express (ASE) – Tseung Kwan O

Baseline Water Quality Monitoring Report (Zone A)

Environmental Resources Management

16/F DCH Commercial Centre 25 Westlands Road Quarry Bay Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Document Code: 0171870 WQM Baseline Flyer Sheet.doc

Client:		GMS No:			
NTT Com Asia Ltd		0171870			
Summary: This report presents the monitoring requirements, methodologies and results of the baseline ambient marine water quality measurements at the monitoring locations near Tseung Kwan O in accordance with the EM&A Manual.		Date: 19 September 2012 Approved by:			
0	Baseline Water Quality Monitoring Report	YL	GYANG	TFONG	19 Sep 12
Revision	Description	Ву	Checked	Approved	Date
This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.		Distributio	on mal lic fidential		EN UNIX SACOLINA CIERCE NA. CHES STARS ESC UNIX SACOLINA ESC UNIX

Asia Submarine-cable Express (ASE) – Tseung Kwan O Environmental Certification Sheet EP-433/2011

Reference Document/Plan

Document/ Plan- to be -Certified / Verified:	Baseline Water Quality Monitoring Report (Zone A)
Date of Report:	19 September 2012
Date prepared by ET:	ERM-Hong Kong Ltd
Date received by IEC:	Ecosystem Ltd

Reference EM&A Manual/ EP Requirement

EM&A Manua	l Requirement: Section 2			
Content:	Water Quality Monitoring			
2.5 "The Baselir should be su	e Monitoring Report shall be provided no later than two weeks before the cable laying work and report bmitted to EPD for agreement on the Action/Limit Levels"			
2.6 "The Baselir showing loo environmen	2.6 "The Baseline Monitoring Report shall include the following details: brief project background information; drawings showing locations of the baseline monitoring station; an updated construction programme with milestones of environmental protection/ mitigation activities annotated"			
EP Condition: Condition No. 2.4				
EP Condition:	Condition No. 2.4			
EP Condition: <i>Content:</i>	Condition No. 2.4 Baseline Monitoring Report on Water Quality			
EP Condition: <i>Content:</i> (ii)(a) To moni Permit I report o the appr	Condition No. 2.4 Baseline Monitoring Report on Water Quality tor the environmental impacts and timely implementation of the recommended mitigation measures, the Holder shall submit to the Director four hard copies and one electronic copy of the baseline monitoring in water quality no later than two weeks before the commencement of construction works, as defined in oved EM&A Manual.			

ET Certification

I hereby certify that the above referenced document/plan complies with the above referenced condition of EP-433/2011.

/eve

Terence Fong, Environmental Team Leader: Date:

19 September 2012

IEC Verification

I hereby verify that the above referenced document/plan complies with the above referenced condition of EP-433/2011.

Vincent Lai, Independent Environmental Checker: Date: 19 Septe

19 September 2012

EXECUTIVE SUMMARY

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	PURPOSE OF THIS REPORT	2
1.3	STRUCTURE OF THE REPORT	2
2	WATER QUALITY MONITORING	3
2.1	Monitoring Location	3
2.2	SAMPLING AND TESTING METHODOLOGY	4
2.3	BASELINE MONITORING RESULTS	6
2.4	Action and Limit Levels	7
3	CONCLUSION	9

I

ANNEXES

Annex A	Baseline Water Quality Monitoring Schedule for Zone A
Annex B	Calibration Reports of Multi-parameter Sensor
Annex C	QA/ QC Results for Suspended Solids Testing
Annex D	Baseline Water Quality Monitoring Results for Zone A

EXECUTIVE SUMMARY

Baseline Water Quality Monitoring

Baseline water quality monitoring has been conducted between 29 August and 3 September 2012 at 11 designated monitoring stations (7 Sensitive Receiver Stations, 3 Gradient Stations and 1 Control Station) established for the Project. *In situ* water quality measurements and water samples were taken at the monitoring stations on three occasions (days), at three depths (surface, middle and bottom) where practical. The intervals between two sets of monitoring were not less than 36 hours. The water quality sampling was undertaken within a 3 hour window of 1.5 hour before and 1.5 hour after mid flood and mid-ebb tides. The tidal range selected for the baseline monitoring was at least 0.5 m for both flood and ebb tides as far as practicable.

No major activities influencing water quality were observed in the vicinity of the Project's marine works area during the baseline monitoring. Water quality monitoring results are, therefore, considered to be representative for the baseline conditions of the areas where marine works will be undertaken for the Project.

In accordance with the *EM&A Manual*, the baseline monitoring results were used to determine the Action and Limit Levels for Dissolved Oxygen (DO), Suspended Solids (SS) and Turbidity for the impact water quality monitoring which will be conducted during marine works of the Project. The Action and Limit Levels are summarized in *Table 1* below.

Table 1Action and Limit Levels for Water Quality

Parameter	Action Level	Limit Level			
SS in mgL-1	95%-ile of baseline data	99%-ile of baseline data			
(Depth-averaged) ^{(a) (c)}	(6.27 mg L ⁻¹), or	(6.40 mg L ⁻¹) , and			
	20% exceedance of value at any impact station compared with corresponding data from control station	30% exceedance of value at any impact station compared with corresponding data from control station			
DO in mgL ^{-1 (b)}	Surface and Middle ^(d)	Surface and Middle ^(d)			
	5%-ile of baseline data for surface and middle layer (4.36 mg L-1)	5mg/L or 1%-ile of baseline for surface and middle layer (4.25 mg L-1)			
	Bottom	Bottom			
	5%-ile of baseline data for bottom layers	2mg/L or 1%-ile of baseline data for bottom layer			
	(4.39 mg L ⁻¹)	(4.33 mg L ⁻¹)			
Turbidity in NTU (Depth- averaged) ^{(a) (c)}	95%-ile of baseline data (4.38 NTU), or	99%-ile of baseline data (4.43 NTU), and			
	20% exceedance of value at any impact station compared with corresponding data from control station	30% exceedance of value at any impact station compared with corresponding data from control station			
Notes:					
e. "Depth-averaged" is calculated by taking the arithmetic means of reading of all sampled depths.					
f. For DO, non-complian	ce of the water quality limits oc	curs when the monitoring result			
is lower than the limits.					
g. For 55 and turbidity	g. For SS and turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits				

non compliance of the water quality minus occurs when monitoring result is higher than the limits.h. The Action and Limit Level for DO for surface and middle layer were calculated from

the combined pool of baseline surface layer data and baseline middle layer data.

1.1 BACKGROUND

NTT Com Asia (NTTCA) proposes to install a telecommunication cable (Asia Submarine-cable Express (ASE) cable) of approximately 7,200 km in length, connecting Japan and Singapore with branches to the Philippines, Hong Kong SAR (HKSAR) and Malaysia. NTTCA is responsible for securing the approval to land the ASE cable in Tseung Kwan O, Hong Kong SAR (HKSAR). The proposed landing site will be at a new Beach Manhole (BMH) and ultimately connect with a Data Centre in Tseung Kwan O (TKO) Industrial Estate which is scheduled for completion in 2012. It should be noted that Tseung Kwan O is currently the landing site for a number of submarine cables. From Tseung Kwan O, the cable will extend eastward approaching the Tathong Channel. Near to Cape Collinson, the cable is approximately parallel to the Tathong Channel until north of Waglan Island where the cable travels eastward to the boundary of HKSAR waters where it enters the South China Sea. The total length of cable in Hong Kong SAR waters is approximately 33.5 km. A map of the proposed cable route is presented in Figure 1.1.

A Project Profile (PP-452/2011) which includes an assessment of the potential environmental impacts associated with the installation of the submarine telecommunications cable system was prepared and submitted to the Environmental Protection Department (EPD) under section 5.(1)(b) and 5.(11) of the *Environmental Impact Assessment Ordinance (EIAO)* for the application for Permission to apply directly for Environmental Permit (EP). The Environmental Protection Department, subsequently issued an Environmental Permit (EP- 433/2011).

Pursuant to *Condition 2.4* of the *EP*, an environmental monitoring and audit (EM&A) programme as set out in the *Environmental Monitoring and Audit Manual (M&A Manual)* is required to be implemented. In accordance with the *EM&A Manual*, baseline monitoring of marine water quality should be undertaken for the Project. This *Water Quality Baseline Monitoring Report* ("the Report") is prepared by ERM-Hong Kong, Limited (ERM) on behalf of NTT Com Asia (NTTCA) to present the methodology and findings of the baseline marine water quality monitoring for the Project.

Given that the water sampling stations in Zone A are situated quite far away from those in Zones B and C, and the commencement dates of construction in each zone are also different, it is recommended to present the baseline data in separate reports (i.e. Part A for Zone A, Part B for Zone B and Part C for Zone C) and the corresponding Action and Limit Levels will be derived from the baseline data for each zone.

1

1.2 PURPOSE OF THIS REPORT

The purpose of this *Baseline Water Quality Monitoring Report (Part A)* is to determine the baseline marine water quality at the designated monitoring locations around the Project works area in Zone A prior to the commencement of the cable laying works of the Project. Such baseline conditions will be used as the basis for assessing water quality impacts, if any, and for compliance monitoring during the construction of the Project.

Under the requirement of *Condition 2.4* of the *EP*, the baseline monitoring report on water quality shall be prepared and submitted to the DEP no later than two weeks before the commencement of construction works of the Project.

1.3 STRUCTURE OF THE REPORT

The remainder of the report is structured as follows:

Section 1: Introduction

Provide details of the background, purpose and structure of the report.

Section 2: Water Quality Monitoring

Summarize the water quality monitoring locations and frequency, monitoring methodology and baseline monitoring results, and establishes the Action and Limit Levels in accordance with the *EM&A Manual*.

Section 3: Conclusion

Conclude the representativeness of the baseline monitoring results and observations for the Project.

2 WATER QUALITY MONITORING

2.1 MONITORING LOCATION

Baseline water quality monitoring in Zone A was conducted prior to the commencement of cable laying works at the monitoring stations listed in *Table 2.1* and shown in *Figure 2.1*.

- E7 is the Impact Station located at Fat Tong Chau to monitor the impacts of cable installation works on the coral communities in the proximity;
- E8 is an Impact Station to monitor the impacts of cable installation works on the coral communities along Junk Bay South West;
- E9 is an Impact Station to monitor the impacts of cable installation works on the coral communities at Cape Collison (the Gradient Station is not set due to the short distance of this Impact Station to near by proposed cable works which may affect the cable laying works);
- F1 is an Impact Station to monitor the impacts of cable installation works on the Tung Lung Chau Fish Culture Zone;
- S1 is an Impact Station situated at the WSD Seawater Intake Point in Junk Bay. It is located within 500 m north of the cable alignment at Junk Bay and set up to monitor the effect of cable laying works in the area;
- S2 is an Impact Station to monitor the impacts of cable installation works on the WSD Seawater Intake at Siu Sai Wan;
- S3 is an Impact Station to monitor the impacts of cable installation works on the Pamela Youde Nethersole Eastern Hospital Cooling Water Intake at Heng Fa Chuen;
- G1 is a Gradient Station between S1 and the cable alignment;
- G2 is a Gradient Station between S2 and the cable alignment;
- G3 is a Gradient Station between F1 and the cable alignment; and
- C1 is a Control Station (approximately 3 km from the proposed cable alignment) for Zone A. It is not supposed to be influenced by the cable laying works due to its remoteness to the construction works.

Table 2.1Water Quality Monitoring Stations

Monitoring Station	Nature	Easting	Northing
E7	Impact Station (Coral Community)	843779	814520
E8	Impact Station (Coral Community)	843111	815126
E9	Impact Station (Coral Community)	843557	811853
F1	Impact Station (Fish Culture Zone)	847196	811056

ENVIRONMENTAL RESOURCES MANAGEMENT 0171870 BASELINE MONITORING REPORT ZONE A.DOC

3

Monitoring Station Nature		Easting	Northing	
S1	Impact Station (Seawater Intakes)	847639	805900	
S2	Impact Station (Seawater Intakes)	849587	805696	
S3	Impact Station (Seawater Intakes)	845474	810605	
G1	Gradient Station	845297	816282	
G2	Gradient Station	844071	814784	
G3	Gradient Station	846099	812826	
C1	Control Station	842022	816547	

2.2 SAMPLING AND TESTING METHODOLOGY

2.2.1 Monitoring Parameters

The parameters measured *in situ* were:

- Dissolved Oxygen (DO) (% saturation and mg L⁻¹)
- Salinity (ppt)
- Temperature (°C)
- Turbidity (NTU)

The only parameter to be measured in the laboratory was:

• Suspended solids (SS) (mg L⁻¹)

In addition to the water quality parameters, other relevant data were also measured and recorded in field logs, including the location of the sampling stations, water depth, time, weather conditions, sea conditions, tidal state, current direction and speed, special phenomena and work activities undertaken around the monitoring and works area that may influence the monitoring results.

2.2.2 Monitoring Equipment

Table 2.2 summaries the equipment used for the baseline water quality monitoring.

Equipment	Model
Global Positioning Device	Garmin etrex 10
Water Depth Gauge	Speedtech Instrument SM-5A
Water Sampling Equipment	1510 Kemmerer Water Sampler
Salinity, DO, Temperature Measuring Meter	YSI Pro 2030
Current Velocity and Direction	Flow Probe FP11
Turbidity Meter	HACH Model 2100Q Turbid Meter

Table 2.2Equipment used during the Baseline Water Quality Monitoring Programme

2.2.3 Monitoring Frequency and Timing

The water monitoring was carried out on three occasions (days) and the intervals between two sets of monitoring were not less than 36 hours. The

water quality sampling was undertaken within a 3 hour window of 1.5 hour before and 1.5 hour after mid flood and mid-ebb tides. The tidal range selected for the baseline monitoring was at least 0.5 m for both flood and ebb tides as far as practicable.

Reference were made to the predicted tides at Tai Miu Wan, which is the tidal station nearest to the Project Site, published on the website of the Hong Kong Observatory ⁽¹⁾. Based on the predicted tidal levels at Tai Miu Wan, the baseline water quality monitoring was conducted between 29 August and 3 September 2012, following the schedule presented in *Annex A*. Schedule for baseline monitoring has been submitted to the Contractor, Independent Environmental Checker (IEC), Engineer Representative (ER) and Environmental Protection Department (EPD) one week prior to the commencement of the monitoring works.

2.2.4 Sampling/ Testing Protocol

All *in situ* monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use (see calibration reports in *Annex B*), and subsequently recalibrated at-monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use.

For the on-site calibration of field equipment, the *BS* 1427: 1993, *Guide to Field and On-Site Test Methods for the Analysis of Waters* was observed. Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was made available.

Water samples for SS measurements were collected in high density polythene bottles, packed in ice (cooled to 4° C without being frozen), and delivered to a HOKLAS laboratory as soon as possible after collection.

3 replicate samples were collected from each of the monitoring events for *in situ* measurement and lab analysis.

2.2.5 Laboratory Analysis

All laboratory work was carried out in a HOKLAS accredited laboratory. Water samples of about 1,000 mL were collected at the monitoring and control stations for carrying out the laboratory determinations. The determination work started within the next working day after collection of the water samples. The SS laboratory measurements were provided within 2 days of the sampling event (48 hours). The analyses followed the standard methods as described in APHA Standard Methods for the *Examination of Water and Wastewater*, 19th Edition, unless otherwise specified (APHA 2540D for SS).

The QA/QC details were in accordance with requirements of HOKLAS or another internationally accredited scheme (*Annex C*)

2.2.6 Sampling Depths & Replication

Each station was sampled and measurements/ water samples were taken at three depths, namely, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth less than 6 m, the mid-depth station may be omitted. For stations that are less than 3 m in depth, only the mid-depth sample was taken.

For *in situ* measurements, duplicate readings were made at each water depth at each station. Duplicate water samples were collected at each water depth at each station.

2.3 BASELINE MONITORING RESULTS

The monitoring data and graphical presentations for baseline water quality monitoring are provided in *Annex D*. No marine construction activities were observed in the vicinity of the monitoring stations during the baseline monitoring. No other major activities influencing water quality were identified during the monitoring period, and weather conditions were generally calm during the baseline monitoring period.

The observations from the monitoring results are as following:

- For all monitoring stations, water quality was variable throughout the baseline monitoring period and this represented natural fluctuation in water quality ;
- Fluctuation of Dissolved Oxygen (DO) was observed within the monitoring period whilst DO levels moved to a similar level across all the monitoring stations in the last day of monitoring. Hence, it is considered that DO levels between Sensitive Receivers and Control Stations are similar in average although fluctuation exists;
- DO levels at all depths were generally high for all samples, DO levels <4 mg L⁻¹ were not recorded;
- Relatively higher levels of turbidity were recorded at Gradient Station G2 and Sensitive Receiver Station E9, S2 and S3 during mid-ebb and mid-flood tidal condition;
- Higher levels of suspended solids (SS) were recorded at Gradient Station G2 and Sensitive Receiver Station E9, S2 and S3 during mid-ebb. During mid-flood tidal condition, relatively higher levels of SS were recorded at Gradient Station G3 and Sensitive Receiver Station S1, S2 and S3; and
- The above sporadic patterns of relatively high levels of turbidity and SS in the water monitoring stations are considered to be a characteristic of water quality in this area of Hong Kong.

2.4 ACTION AND LIMIT LEVELS

The Action and Limit Levels were set in the *EM&A Manual* and the proposed Action and Limit Levels were determined as shown in *Table 2.3*.

Table 2.3Determination of Action and Limit Levels for Water Quality

Parameter	Action Level	Limit Level ^(d)	
SS in mgL ⁻¹ (Depth-averaged) ^{(a) (c)}	95%-ile of baseline data or	99%-ile of baseline data, and	
	20% exceedance of value at any impact station compared with corresponding data from control station	30% exceedance of value at any impact station compared with corresponding data from control station	
DO in mgL ^{-1 (b)}	Surface and Middle	Surface and Middle	
	5%-ile of baseline data for surface and middle layer	5mg/L or 1%-ile of baseline for surface and middle layer	
	Bottom	<u>Bottom</u>	
	5%-ile of baseline data for bottom layers	2mg/L or 1%-ile of baseline data for bottom layer	
Turbidity in NTU (Depth- averaged) ^{(a) (c)}	95%-ile of baseline data, or	99%-ile of baseline data, and	
	20% exceedance of value at any impact station compared with corresponding data from control station	30% exceedance of value at any impact station compared with corresponding data from control station	
Notes:			

a. "Depth-averaged" is calculated by taking the arithmetic means of reading of all sampled depths.

b. For DO, non-compliance of the water quality limits occurs when the monitoring result is lower than the limits.

c. For SS and turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

d. Limit level for DO was derived from the Water Quality Objectives (WQO) for Junk Bay, Eastern Buffer, and Mirs Bay Water Control Zones under the Water Pollution Control Ordinance (WPCO) Chapters 358L, 358Y, and 358I respectively.

The Action and Limit Levels have been determined based on baseline water quality monitoring data for all monitoring stations in Zone A. The results are presented in *Table 2.4*. Please note that the results are used to determine the Action and Limit Levels for the cable laying works to be undertaken in Zone A.

Parameter	Action Level	Limit Level			
SS in mgL-1	95%-ile of baseline data	99%-ile of baseline data			
(Depth-averaged) (a) (c)	(6.27 mg L ⁻¹), or	(6.40 mg L ⁻¹) , and			
	20% exceedance of value at any impact station compared with corresponding data from control station	30% exceedance of value at any impact station compared with corresponding data from control station			
DO in mgL ^{-1 (b)}	Surface and Middle ^(d)	Surface and Middle ^(d)			
	5%-ile of baseline data for surface and middle layer (4.36 mg L-1)	5mg/L or 1%-ile of baseline for surface and middle layer			
	(4.50 mg L-1)	(4.20 mg L-1)			
	bottom	bottom			
	5%-ile of baseline data for bottom layers	2mg/L or 1%-ile of baseline data for bottom layer			
	(4.39 mg L ⁻¹)	(4.33 mg L ⁻¹)			
Turbidity in NTU (Depth- averaged) ^{(a) (c)}	95%-ile of baseline data (4.38 NTU), or	99%-ile of baseline data (4.43 NTU), and			
	20% exceedance of value at any impact station compared with corresponding data from control station	30% exceedance of value at any impact station compared with corresponding data from control station			
Notes:					
a. "Depth-averaged" is sampled depths.	s calculated by taking the arith	metic means of reading of all			
b. For DO, non-complia is lower than the limits.	ance of the water quality limits oc	curs when the monitoring result			
c. For SS and turbidi	c. For SS and turbidity, non-compliance of the water quality limits occurs when				

Table 2.4Action and Limit Levels for Water Quality

c. For SS and turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

d. The Action and Limit Level for DO for surface and middle layer were calculated from the combined pool of baseline surface layer data and baseline middle layer data.

Baseline water quality monitoring in Zone A has been conducted between 29 August and 3 September 2012 at 11 designated monitoring stations (including 7 Sensitive Receiver Stations, 3 Gradient Stations and 1 Control Station). The monitoring was conducted out in 3 days, at mid-flood and mid-ebb tides, at three depths (surface, middle and bottom). The intervals between two sets of monitoring were not less than 36 hours. During the monitoring period, no major activities influencing water quality were observed in the vicinity of the Project's marine works area. Water quality monitoring results are, therefore, considered to be representative of the baseline conditions of the areas where marine works will be undertaken for the Project.

The baseline monitoring results were used to determine the Action and Limit Levels for the DO, SS and turbidity for impact monitoring to be conducted at Zone A throughout the construction phase of the Project.

3

Annex A

Baseline Water Quality Monitoring Schedule for Zone A

ASE Submarine Cable System - Tseung Kwan O Tentative Water Quality Baseline Monitoring Schedule - August 2012

Reference Tidal Station:	Tai Miu Wan (source: HK	Observatory Department)				as of 21 August 2012
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			01-Aug	02-Aug	03-Aug	04-Aug
05.4			00.4	20 A	10.1	
05-Aug	06-Aug	07-Aug	08-Aug	09-Aug	10-Aug	11-Aug
12-Auc	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug	18-Aug
	107109		107103	107103		
19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug	25-Aug
26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug	
			Nid-Ebb: 09:00 - 13:00		Mid-Ebb: 10:30 - 14:30	
			(Zono A 11 stations)		(Zono A 11 stations)	
			Baseline Monitoring		Reseline Monitoring	
			Dasenne wontoning		Dasenne wontoning	

The schedule is subject to agreement from the EPD and AFCD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due

Reference Tidal Station:	Tai Miu Wan (source: HK	Observatory Department)			as of 21 August 2012
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						01-Sep
02-Sep	03-Sep	04-Sep	05-Sep	06-Sep	07-Sep	08-Sep
	Mid-Ebb: 11:00 - 15:00					
	Mid-Elood: 16:30 - 20:30					
	(Zone A, 11 stations)					
	Baseline Monitoring					
09-Sep	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep
16-Sep	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep
23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep
00.0						
30-Sep						

ASE Submarine Cable System - Tseung Kwan O Tentative Water Quality Baseline Monitoring Schedule - September 2012

The schedule is subject to agreement from the EPD and AFCD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due

Annex B

Calibration Reports of Multi-parameter Sensor

Form E/CE/R/12 Issue 7 (1/2) [09/09]

uipment Ref. No.	: ET/EW	//008/005			Manufacture	er	: YSI				
odel No.	: Pro 203	30		_	Serial No.		: 12A 1003	53			
te of Calibration	: 25/08/2	2012			Calibration I	Due Date	: 24/11/201	2			
Temperature Verific	ation										
Ref No of Reference	e Thermome	ter :	ET/0521/	001							
Ref. No. of Water Do	+1							p - 40040			
Kel. No. of water Ba	un :										
					Temp	erature (°C)					
Reference Th	ermometer r	eading	Measured	1	20.2	Corrected		19.8			
DO M	eter reading		Measurec	1	19.7	Difference		0.1			
	<u> </u>										
Standardization of s	odium thiosi	ulphate (Na	1 ₂ S ₂ O ₃) sol	lution							
Reagent No. of Na ₂ S	₂ O ₃ titrant	CF	PE/012/4.5/00)1/5 Reage	ent No. of 0.02	CPE/012/	4.4/001/12				
L					Trial	Tri	al 2				
Initial Vol. of Na ₂ S ₂ C	D ₃ (ml)		···· · · · · · · · · · · · · · · · · ·		0.00		0.00				
Final Vol. of Na ₂ S ₂ O	3 (ml)				40.10		40.	05			
Vol. of Na ₂ S ₂ O ₃ used	l (ml)				40.10		40.	05			
Normality of Na ₂ S ₂ O	3 solution (N	1)			0.0249	4	0.02	497			
Average Normality (I	N) of Na_2S_2	D_3 solution	(N)			0.02496	5				
Acceptance criteria,	Deviation					Less than ± ().001N				
Calculation:	Normality c	of $Na_2S_2O_3$,	$\mathbf{N} = 1 / \mathrm{ml} \mathrm{N}$	$a_2S_2O_3$ used							
Lineality Checking											
Enclary Checking				waa							
Determination of dis	solved oxyg	en content	by Winkler 1	fitration *	-						
Purging Time (min)			,	2		5	1	0			
Trial) (1)		1	2		2	1	2			
Final Vol. of Na ₂ S ₂	\mathcal{L}_3 (ml)		0.00	11.20	22.20	0.00	7.60	12.30			
$\frac{1}{1} \frac{1}{1} \frac{1}$	$\frac{13}{100}$		11.20	22.20	29.90	7.60	12.30	17.20			
V_{01} (V) of $Na_2S_2O_3$	$\frac{1}{1}$		7.50	11.00	7.70	7.00	4.70	4.90			
Acceptance criteria	Deviation		Less than	$\frac{7.57}{+0.3 mg/L}$	Less that	$\frac{5.09}{1+0.3 \text{mg/L}}$	Less than	+ 0.3 mg/L			
Calculation:	DO (mg/L)	= V x N x	8000/298					000118.2			
	DO	matan naadi		Winklo	" Tituation "	ult * mg/I	Difference	(%) of DC			
		2	Averao		2	Average	Cor	tent			
Purging time, min	*	7 60	7.56	7.50	7.37	7,44	1.0	50			
Purging time, min	7.51	1.00			-1	5.12	1	5.5			
Purging time, min 2 5	7.51 5.21	5.20	5.21	5.16	5.09	3.15	1	55			
Purging time, min 2 5 10	7.51 5.21 3.19	5.20 3.25	5.21	5.16	5.09 3.28	3.13	0.0	00			

Form E/CE/R/12 Issue 7 (2/2) [09/09]

Internal Calibration Report of Dissolved Oxygen Meter Zero Point Checking DO meter reading, mg/L 0.00 Salinity Checking Reagent No. of NaCl (10ppt) CPE/012/4.7/001/28 Reagent No. of NaCl (30ppt) CPE/012/4.8/001/28 Determination of dissolved oxygen content by Winkler Titration ** Salinity (ppt) 30 10 Trial 1 2 1 2 Initial Vol. of Na₂S₂O₃ (ml) 0.00 11.50 23.20 33.90 Final Vol. of Na₂S₂O₃ (ml) 33.90 44.40 11.50 23.20 Vol. (V) of $Na_2S_2O_3$ used (ml) 11.50 11.70 10.70 10.50 Dissolved Oxygen (DO), mg/L 7.17 7.04 7.71 7.84 Less than + 0.3mg/L Acceptance criteria, Deviation Less than + 0.3 mg/LDO (mg/L) = $V \times N \times 8000/298$ Calculation: Winkler Titration result**, mg/L DO meter reading, mg/L Difference (%) of DO Salinity (ppt) Content 2 Average 1 2 Average 1 1.29 7.78 7.68 7.71 7.84 10 7.7 7.65 7.05 7.09 7.17 7.04 7.11 0.28 30 7.13 Acceptance Criteria (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : < 0.5 °C (2) Linear regression coefficient : >0.99 (3) Zero checking: 0.0mg/L (4) Difference (%) of DO content from the meter reading and by winkler titration : within \pm 5% The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use. " Delete as appropriate : Arez Approved by : Calibrated by CEP/012/W

Performat	nce Check o	of Salinity Meter											
Equipment Ref. No. : <u>ET/EV</u>	V/008/005	Manufacturer : <u>YSI</u>											
Model No.: Pro 20Date of Calibration: 25/08/2	<u>30</u> 2012	Serial No. : $12A \ 100353$ Due Date : $\frac{24/}{11/2012}$											
Ref. No. of Salinity Standard used (30ppt) S/001/3													
Salinity Standard Measured Salinity Difference % (ppt)													
30.0	30.2	0.66											
Acceptance Criteria	Difference : <	<10 %											
The salinity meter complies and is deemed acceptable * national standards.	The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.												
Checked by :	App	proved by :											

. I

	Performance Check of Turbidimeter											
Equipment Re	f. No. :	ET/0505/008	Manufactu	rer :	НАСН							
Model No.	:	<u>2100Q</u>	Serial No.	:	10030 C 001191							
Date of Calibr	ation :	02/08/2012	Due Date	:	01/11/2012							
Gelex V	/ial Std	Theoretical Value (NTU)	Measured Value (NTU)	E	Difference %							
0-10	NTU	5.70	5.62		1.41							
10-100) NTU	52.1	52.7		1.15							
100-100)0 NTU	547	539		1.47							
			L									
Acceptance Cr	iteria	Differe	ence : <5 %									
The salini and is dee national st	ty meter c med accep andards.	omplies * / does no otable * / unaccepta	t comply * with the ble * for use. Meas	e specif uremen	ied requirements its are traceable to							
Checked by : _	A	ez	Approved by : _	2								
				-								

Annex C

QA/QC Results for Suspended Solids Testing

QA/QC Results of Laboratory Analysis of Total Suspended Solids

Sampling Data	QC Sample	Sample I	Duplicate	Sample	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery @
	101.2	FC1S-1	3.92	FS1S-2	91.8
	96.1	FS1S-3	0.00	FE7M-1	98.0
	102.3	FE7M-2	4.88	FG3M-3	98.1
	100.8	FG3B-1	0.00	FS2B-2	98.1
20 08 2012	106.0	FS2B-3	2.90	FS3B-3	103.8
29-00-2012	100.0	EC1S-1	3.92	ES1S-2	101.9
	94.6	ES1S-3	0.00	EE7M-1	95.9
	96.1	EE7M-2	4.44	EG3M-3	103.9
	99.6	EG3B-1	0.00	ES2B-2	93.9
	98.3	ES2B-3	2.90	ES3B-3	100.0
Note:	(*)	% Recovery of QC s	ample should be be	tween 80% to 120%	

(#)

(@)

(**)

% Recovery of QC sample should be between 80% to 120%.

% Error of Sample Duplicate should be between 0% to 10%.

% Recovery of Sample Spike should be between 80% to 120%.

% Error of Sample Duplicate	> 10% but invalid due to	o complo roculto	loca than MDI
/o Litor of Sample Duplicate		sample results	1655 than MDL.

Compling Data	QC Sample	Sample I	Duplicate	Sample	e Spike						
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery @						
	103.9	FC1S-1	4.88	FS1S-2	92.3						
31-08-2012	105.5	FS1S-3	6.90	FE7M-1	104.0						
	107.0	FE7M-2	0.00	FG3M-3	106.0						
	104.4	FG3B-1	4.88	FS2B-2	91.8						
	107.0	FS2B-3	2.99	FS3B-3	98.0						
0.0010.1	100.4	EC1S-1	4.08	ES1S-2	106.1						
	105.0	ES1S-3	0.00	EE7M-1	104.3						
	95.6	EE7M-2	5.41	EG3M-3	96.2						
	107.2	EG3B-1	3.64	ES2B-2	102.0						
	93.0	ES2B-3	3.28	ES3B-3	102.1						
Note:	(*)	% Recovery of QC s	ample should be be	tween 80% to 120%							
	(*)	% Error of Sample Duplicate should be between 0% to 10%.									
	(@)	% Recovery of Sam	ple Spike should be	between 80% to 120	0%.						

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than MDL.

QA/QC Results of Laboratory Analysis of Total Suspended Solids

Sampling Date	QC Sample	Sample I	Duplicate	Sampl	e Spike
	% Recovery *	Sample ID	% Error [#]	Sample ID	% Recovery @
	105.0	FC1S-1	4.88	FS1S-2	96.2
	98.2	FS1S-3	7.41	FE7M-1	96.2
	94.3	FE7M-2	5.13	FG3M-3	93.9
	97.7	FG3B-1	4.44	FS2B-2	98.0
02 00 2012	105.4	FS2B-3	0.00	FS3B-3	101.9
03-09-2012	92.1	EC1S-1	4.26	ES1S-2	108.3
	107.6	ES1S-3	7.41	EE7M-1	98.0
	100.8	EE7M-2	0.00	EG3M-3	98.1
	97.5	EG3B-1	4.08	ES2B-2	96.0
	101.0	ES2B-3	0.00	ES3B-3	100.0
Note:	(*)	% Recovery of QC s	sample should be be	tween 80% to 120%).

(#)

(@)

(**)

% Recovery of QC sample should be between 80% to 120%.

% Error of Sample Duplicate should be between 0% to 10%.

% Recovery of Sample Spike should be between 80% to 120%.

% Error of Sample Duplicate >10% but invalid due to sample results less than MDL.

Annex D

Baseline Water Quality Monitoring Results for Zone A

Figure D1 Dissolved oxygen (mg/L) at surface of water column measured during the baseline monitoring period from 29 August to 3 September for Zone A $\,$

Figure D2 Dissolved oxygen (mg/L) at mid-depth of water column measured during the baseline monitoring period from 29 August to 3 September for Zone A

the baseline monitoring period from 29 August to 3 September for Zone A

Figure D4 Depth-averaged turbidity (NTU) of water column measured during the baseline monitoring period from 29 August to 3 September for Zone A

Figure D5 Depth-averaged suspended solid (mg/L) of water column measured during the baseline monitoring period from 29 August to 3 September for Zone A

Annex D1 Baseline Water Quality Monitoring Results during Mid-Flood Tide for 29 August 2012

Date:	29-Aug-12
Tide:	Mid-Flood
Weather:	Fine
Sea Conditions:	Small Wave
Zone	A

	Sampling	Water	Current	Current speed	Monitorina	Temp	perratu	re (°C)	Salinity (ppt)		DO (mg/l)		DO Saturation (%)		tion	Turbidity (NTU)				Suspended Solids (mg/l)					
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.*'
					Surface	27.4	27.4	27.4	26.1	26.0	26.1	5.1	5.1	5.1	75.7	76.1	75.9	3.1	3.0	3.0		4.8	4.8	4.8	
C1	1430-1450	47.8	W	0.6	Middle	27.2	27.3	27.3	26.8	26.7	26.8	4.9	4.9	4.9	73.1	72.7	72.9	2.6	2.7	2.6	3.0	4.6	4.5	4.6	4.9
					Bottom	27.2	27.1	27.2	26.9	26.9	26.9	4.7	4.8	4.8	70.2	70.6	70.4	3.2	3.2	3.2		5.3	5.4	5.4	
					Surface	27.5	27.5	27.5	26.6	26.6	26.6	5.1	5.1	5.1	74.7	75.3	75.0	2.0	2.1	2.1		4.4	4.2	4.3	
E8	1455-1515	19.6	W	0.4	Middle	27.4	27.3	27.4	26.6	26.6	26.6	4.8	4.8	4.8	70.4	70.9	70.7	2.1	2.1	2.1	2.2	4.0	3.9	4.0	4.5
					Bottom	27.2	27.2	27.2	26.6	26.7	26.7	4.7	4.7	4.7	69.1	69.4	69.3	2.5	2.4	2.4		5.4	5.3	5.4	
					Surface	27.8	27.8	27.8	26.3	26.4	26.4	5.6	5.6	5.6	83.0	82.1	82.6	1.5	1.6	1.5		3.6	3.6	3.6	
S1	1520-1540	9.2	W	0.3	Middle	27.5	27.5	27.5	26.5	26.5	26.5	5.6	5.6	5.6	82.6	83.2	82.9	1.8	1.8	1.8	1.6	2.9	3.2	3.1	3.0
					Bottom	27.4	27.4	27.4	26.6	26.6	26.6	5.5	5.5	5.5	81.5	81.8	81.7	1.5	1.5	1.5		2.4	2.5	2.5	
					Surface	28.2	28.1	28.2	26.2	26.2	26.2	6.1	6.0	6.0	89.8	88.3	89.1	2.6	2.6	2.6		5.4	5.4	5.4	
G1	1543-1603	11.0	W	0.2	Middle	28.0	27.9	28.0	26.5	26.4	26.5	5.4	5.4	5.4	80.0	79.5	79.8	2.2	2.2	2.2	2.3	4.9	5.1	5.0	4.8
					Bottom	27.8	27.7	27.8	26.4	26.4	26.4	5.1	5.0	5.0	74.7	73.9	74.3	2.0	2.1	2.0		3.9	4.2	4.1	
					Surface	28.1	28.1	28.1	26.4	26.4	26.4	5.4	5.4	5.4	79.6	80.4	80.0	2.1	2.1	2.1		3.4	3.2	3.3	
F7	1607-1627	12.5	W	0.1	Middle	27.8	27.8	27.8	26.6	26.6	26.6	5.0	5.1	5.0	74.3	74.9	74.6	2.4	2.4	2.4	3.1	4.2	4.5	4.4	4.7
					Bottom	27.6	27.6	27.6	26.5	26.6	26.6	5.0	4.9	4.9	73.4	72.8	73.1	4.7	4.6	4.7		6.6	6.4	6.5	
					Surface	28.2	28.2	28.2	26.7	26.7	26.7	5.8	5.8	5.8	85.1	85.5	85.3	2.1	2.0	2.1		4.0	3.9	4.0	
F1	1637-1657	11.6	W	0.6	Middle	27.9	27.9	27.9	26.8	26.8	26.8	5.5	5.5	5.5	81.4	65.9	73.7	1.6	1.7	1.6	1.7	2.8	2.7	2.8	3.1
					Bottom	27.4	27.4	27.4	26.9	26.9	26.9	5.1	5.1	5.1	75.2	74.9	75.1	1.5	1.5	1.5		2.4	2.5	2.5	
					Surface	28.1	28.1	28.1	26.4	26.4	26.4	5.2	5.2	5.2	77.0	76.8	76.9	2.8	2.9	2.9		4.9	4.7	4.8	
G3	1702-1722	15.4	W	0.3	Middle	27.9	27.8	27.9	26.5	26.5	26.5	4.9	4.9	4.9	72.5	73.0	72.8	2.8	3.1	2.9	3.0	4.8	4.8	4.8	4.9
					Bottom	27.5	27.5	27.5	26.7	26.7	26.7	4.7	4.7	4.7	69.9	69.6	69.8	3.1	3.2	3.2		5.0	5.1	5.1	
					Surface	27.9	27.8	27.9	26.5	26.5	26.5	4.7	4.7	4.7	70.2	69.9	70.1	3.5	3.6	3.6		5.7	5.7	5.7	
E9	1727-1747	18.8	W	0.2	Middle	27.5	27.5	27.5	26.4	26.5	26.5	4.5	4.6	4.6	66.9	68.1	67.5	4.6	4.6	4.6	4.4	6.4	6.6	6.5	6.3
					Bottom	27.3	27.3	27.3	26.5	26.5	26.5	4.7	4.6	4.6	69.1	68.4	68.8	5.0	5.0	5.0		6.7	6.7	6.7	
					Surface	27.9	27.8	27.9	26.5	26.5	26.5	4.7	4.7	4.7	68.8	69.4	69.1	3.9	3.9	3.9		5.7	5.6	5.7	
S2	1752-1812	10.9	W	0.3	Middle	27.7	27.6	27.7	26.4	26.4	26.4	4.6	4.6	4.6	68.7	68.2	68.5	4.6	4.5	4.5	4.4	6.7	6.8	6.8	6.4
					Bottom	27.4	27.4	27.4	26.3	26.2	26.3	4.6	4.6	4.6	67.6	67.4	67.5	4.9	4.9	4.9		6.8	6.8	6.8	
					Surface	27.9	27.8	27.9	26.3	26.3	26.3	4.2	4.3	4.2	62.3	62.9	62.6	3.8	3.8	3.8		5.6	5.8	5.7	
G2	1817-1837	13.2	W	0.3	Middle	27.6	27.5	27.6	26.2	26.2	26.2	4.4	4.4	4.4	65.0	64.5	64.8	4.3	4.4	4.3	4.3	6.2	6.3	6.3	6.1
					Bottom	27.3	27.3	27.3	26.1	26.0	26.1	4.3	4.3	4.3	63.6	64.0	63.8	4.9	4.9	4.9		6.4	6.5	6.5	
					Surface	27.8	27.8	27.8	26.3	26.4	26.4	4.3	4.3	4.3	63.3	62.9	63.1	3.6	3.7	3.6		5.3	5.6	5.5	
S3	1842-1902	10.4	W	0.3	Middle	27.6	27.5	27.6	26.5	26.5	26.5	4.4	4.4	4.4	64.2	65.1	64.7	4.2	4.2	4.2	4.2	6.1	6.2	6.2	6.1
					Bottom	27.4	27.3	27.4	26.6	26.6	26.6	4.4	4.4	4.4	65.1	64.5	64.8	4.6	4.7	4.6		6.8	6.6	6.7	

Note: * Average ** Depth Average

Annex D2 Baseline Water Quality Monitoring Results during Mid-Ebb Tide for 29 August 2012

Date:	29-Aug-12
Tide:	Mid-Ebb
Weather:	Cloudy
Sea Conditions:	Small Wave
Zone	A

	Sampling	Water	Current	Current speed	Monitorina	Temp	perratu	re (°C)		Salinit (ppt)	у		DO (mg/l)	1	DO	Satura (%)	tion	Turbidity (NTU)				Suspended Solids (mg/l)			
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	27.4	27.4	27.4	26.1	26.1	26.1	5.1	5.1	5.1	74.1	73.9	74.0	3.0	3.0	3.0		4.8	4.9	4.9	
C1	0900-0925	47.0	Е	0.5	Middle	27.4	27.4	27.4	26.8	26.7	26.8	4.9	4.9	4.9	71.3	71.5	71.4	2.6	2.6	2.6	2.9	4.8	4.8	4.8	4.9
					Bottom	27.3	27.3	27.3	27.0	26.9	27.0	4.7	4.7	4.7	69.3	69.7	69.5	3.2	3.2	3.2		5.0	5.2	5.1	
					Surface	27.4	27.5	27.5	26.4	26.4	26.4	5.1	5.1	5.1	74.3	74.7	74.5	2.0	2.1	2.1		4.0	4.2	4.1	
E8	0935-100	19.4	E	0.3	Middle	27.4	27.4	27.4	26.4	26.4	26.4	4.7	4.8	4.7	69.2	69.5	69.4	2.1	2.1	2.1	2.2	2.9	3.0	3.0	3.8
					Bottom	27.3	27.4	27.4	26.5	26.4	26.5	4.6	4.7	4.7	67.9	68.3	68.1	2.4	2.4	2.4		4.1	4.4	4.3	
					Surface	27.9	27.7	27.8	26.1	26.3	26.2	5.6	5.6	5.6	84.1	83.5	83.8	1.5	1.6	1.5		2.4	2.6	2.5	
S1	1010-1030	8.8	E	0.2	Middle	27.7	27.7	27.7	26.4	26.4	26.4	5.6	5.6	5.6	83.9	84.2	84.1	1.8	1.8	1.8	1.6	2.7	3.2	3.0	2.7
					Bottom	27.5	27.5	27.5	26.5	26.5	26.5	5.5	5.5	5.5	82.4	81.9	82.2	1.5	1.4	1.4		2.7	2.4	2.6	
					Surface	28.1	28.1	28.1	26.1	26.2	26.2	6.1	6.0	6.1	89.8	88.7	89.3	2.6	2.6	2.6		5.0	5.1	5.1	
G1	1045-1105	10.9	E	0.2	Middle	27.6	27.6	27.6	26.4	26.3	26.4	5.4	5.4	5.4	79.9	79.2	79.6	2.1	2.1	2.1	2.2	5.2	5.3	5.3	4.6
					Bottom	27.6	27.6	27.6	26.5	26.5	26.5	5.1	5.0	5.1	74.9	74.0	74.5	2.0	2.0	2.0		3.6	3.5	3.6	
					Surface	27.7	27.8	27.8	26.4	26.4	26.4	5.4	5.5	5.4	79.2	79.9	79.6	2.0	2.1	2.1		3.0	3.4	3.2	
E7	1115-1135	12.3	E	0.1	Middle	27.5	27.5	27.5	26.4	26.4	26.4	5.0	5.1	5.1	73.7	74.2	74.0	2.4	2.4	2.4	3.0	4.4	4.5	4.5	4.8
					Bottom	27.4	27.4	27.4	26.5	26.5	26.5	5.0	5.0	5.0	72.9	72.5	72.7	4.7	4.6	4.6		6.7	6.5	6.6	
					Surface	28.2	28.2	28.2	26.5	26.5	26.5	5.8	5.8	5.8	85.7	85.9	85.8	2.1	2.0	2.0		3.0	3.0	3.0	
F1	1140-1155	11.4	E	0.5	Middle	27.8	27.5	27.7	26.5	26.6	26.6	5.5	5.5	5.5	81.6	80.8	81.2	1.6	1.6	1.6	1.7	3.6	3.5	3.6	3.2
					Bottom	27.3	27.3	27.3	26.7	26.7	26.7	5.1	5.1	5.1	74.8	74.5	74.7	1.5	1.5	1.5		3.0	2.9	3.0	
					Surface	27.8	27.8	27.8	26.4	26.4	26.4	5.2	5.2	5.2	76.7	76.9	76.8	2.8	2.8	2.8		4.5	4.8	4.7	
G3	1200-1225	15.1	E	0.2	Middle	27.5	27.5	27.5	26.4	26.4	26.4	4.9	5.0	4.9	72.3	72.6	72.5	2.7	2.8	2.7	2.9	4.6	4.8	4.7	4.8
					Bottom	27.3	27.4	27.4	26.5	26.5	26.5	4.8	4.8	4.8	70.5	70.7	70.6	3.1	3.1	3.1		5.0	5.1	5.1	
					Surface	27.6	27.6	27.6	26.3	26.4	26.4	4.8	4.8	4.8	70.8	70.4	70.6	3.6	3.6	3.6		5.2	5.5	5.4	
E9	1235-1255	18.5	E	0.1	Middle	27.5	27.5	27.5	26.4	26.4	26.4	4.6	4.6	4.6	67.4	67.9	67.7	4.5	4.5	4.5	4.4	6.1	6.1	6.1	6.0
					Bottom	27.5	27.4	27.5	26.4	26.5	26.5	4.7	4.7	4.7	68.7	68.2	68.5	4.9	4.9	4.9		6.5	6.7	6.6	
					Surface	27.6	27.5	27.6	26.3	26.4	26.4	4.7	4.7	4.7	68.5	69.3	68.9	3.8	3.8	3.8		5.7	5.6	5.7	
S2	1300-1320	9.9	E	0.2	Middle	27.6	27.6	27.6	26.4	26.4	26.4	4.7	4.7	4.7	68.5	68.2	68.4	4.5	4.5	4.5	4.4	6.2	6.4	6.3	6.2
					Bottom	27.4	27.3	27.4	26.4	26.4	26.4	4.6	4.7	4.7	68.1	68.9	68.5	4.8	4.8	4.8		6.6	6.8	6.7	
					Surface	27.7	27.6	27.7	26.3	26.3	26.3	4.3	4.3	4.3	62.4	63.0	62.7	3.7	3.8	3.8		5.4	5.8	5.6	
G2	1325-1345	13.0	E	0.2	Middle	27.6	27.5	27.6	26.3	26.3	26.3	4.4	4.4	4.4	64.9	64.7	64.8	4.3	4.4	4.3	4.3	6.1	6.2	6.2	6.2
					Bottom	27.5	27.5	27.5	26.3	26.3	26.3	4.4	4.4	4.4	64.0	64.4	64.2	4.9	4.8	4.8		6.8	6.7	6.8	
					Surface	27.8	27.8	27.8	26.2	26.2	26.2	4.3	4.3	4.3	63.7	63.3	63.5	3.5	3.6	3.6		5.5	5.6	5.6	
S3	1350-1410	10.2	E	0.1	Middle	27.6	27.5	27.6	26.2	26.3	26.3	4.4	4.4	4.4	64.3	65.1	64.7	4.2	4.2	4.2	4.1	5.9	6.1	6.0	6.1
					Bottom	27.6	27.5	27.6	26.3	26.3	26.3	4.4	4.4	4.4	64.8	64.2	64.5	4.6	4.6	4.6		6.4	6.8	6.6	

Note: * Average ** Depth Average

Annex D3 Baseline Water Quality Monitoring Results during Mid-Flood Tide for 31 August 2012

Date:	31-Aug-12
Tide:	Mid-Flood
Weather:	Cloudy
Sea Conditions:	Small Wave
Zone	A

Sampling		Water	Current	Current speed	Monitorina	Temp	erratu	re (°C)		Salinity (ppt)		DO (mg/l)		DO Saturation (%)			Turbidity (NTU)					Suspended Solids (mg/l)				
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**	
					Surface	27.6	27.5	27.6	25.9	26.1	26.0	5.1	5.1	5.1	74.9	75.2	75.1	3.0	3.0	3.0		3.8	4.0	3.9		
C1	1530-1552	38.6	w	0.4	Middle	27.2	27.2	27.2	26.7	26.7	26.7	4.9	5.0	5.0	72.7	73.4	73.1	2.4	2.4	2.4	2.8	3.0	3.1	3.1	3.8	
					Bottom	27.1	27.1	27.1	27.0	26.9	27.0	4.8	4.8	4.8	70.4	70.8	70.6	3.0	3.1	3.1		4.0	4.6	4.3		
					Surface	27.5	27.5	27.5	26.3	26.4	26.4	5.1	5.1	5.1	75.0	74.8	74.9	1.9	2.0	2.0		2.8	3.0	2.9		
E8	1557-1617	20.0	W	0.3	Middle	27.3	27.4	27.4	26.5	26.6	26.6	4.8	4.8	4.8	70.2	70.9	70.6	2.0	2.0	2.0	2.1	3.0	3.2	3.1	3.1	
					Bottom	27.1	27.0	27.1	26.7	26.6	26.7	4.7	4.7	4.7	69.0	68.6	68.8	2.2	2.3	2.3		3.3	3.4	3.4		
					Surface	27.7	27.7	27.7	26.3	26.4	26.4	5.7	5.8	5.8	84.7	84.9	84.8	1.6	1.6	1.6		2.6	3.0	2.8		
S1	1621-1637	9.8	W	0.3	Middle	27.6	27.6	27.6	26.6	26.6	26.6	5.6	5.7	5.6	82.9	83.6	83.3	1.7	1.7	1.7	1.5	2.6	2.7	2.7	2.6	
					Bottom	27.4	27.3	27.4	26.7	26.7	26.7	5.6	5.6	5.6	82.6	82.3	82.5	1.4	1.4	1.4		2.6	2.2	2.4		
					Surface	27.5	27.6	27.6	25.8	25.9	25.9	6.2	6.2	6.2	91.4	91.0	91.2	2.8	2.7	2.8		3.6	3.2	3.4		
G1	1651-1707	11.2	W	0.2	Middle	27.4	27.3	27.4	26.4	26.3	26.4	5.8	5.7	5.8	85.5	84.2	84.9	2.3	2.3	2.3	2.4	3.2	3.0	3.1	3.3	
					Bottom	27.1	27.2	27.2	26.6	26.6	26.6	5.2	5.2	5.2	77.3	76.8	77.1	2.2	2.2	2.2		3.2	3.4	3.3		
					Surface	27.4	27.3	27.4	26.5	26.4	26.5	5.6	5.6	5.6	82.7	81.9	82.3	2.0	2.0	2.0		2.8	3.2	3.0		
E7	1717-1734	12.8	W	0.2	Middle	27.3	27.2	27.3	26.5	26.6	26.6	5.2	5.2	5.2	76.7	76.4	76.6	2.2	2.2	2.2	2.9	3.4	3.0	3.2	3.9	
					Bottom	27.2	27.3	27.3	26.6	26.5	26.6	5.1	5.2	5.1	74.7	75.9	75.3	4.4	4.4	4.4		5.2	5.6	5.4		
					Surface	27.4	27.5	27.5	26.5	26.4	26.5	5.8	5.9	5.9	86.1	86.6	86.4	2.0	2.1	2.1		3.2	3.6	3.4		
F1	1739-1754	11.8	W	0.5	Middle	27.4	27.3	27.4	26.7	26.6	26.7	5.7	5.7	5.7	84.5	83.7	84.1	1.9	1.9	1.9	1.9	2.8	3.0	2.9	3.0	
					Bottom	27.3	27.2	27.3	26.7	26.7	26.7	5.2	5.2	5.2	76.6	76.3	76.5	1.8	1.9	1.8		2.4	2.8	2.6		
					Surface	27.5	27.6	27.6	26.3	26.2	26.3	5.3	5.4	5.3	77.4	79.0	78.2	2.8	2.8	2.8		3.5	3.8	3.7		
G3	1800-1819	16.0	W	0.2	Middle	27.3	27.4	27.4	26.5	26.5	26.5	5.1	5.0	5.0	74.5	73.6	74.1	2.7	2.7	2.7	2.9	2.8	3.0	2.9	3.5	
					Bottom	27.2	27.2	27.2	26.7	26.8	26.8	4.9	4.9	4.9	72.9	72.3	72.6	3.0	3.0	3.0		3.8	4.3	4.1		
					Surface	27.4	27.5	27.5	26.4	26.5	26.5	4.9	4.9	4.9	72.8	72.0	72.4	3.6	3.5	3.5		4.8	5.0	4.9		
E9	1829-1850	19.6	W	0.1	Middle	27.3	27.4	27.4	26.5	26.5	26.5	4.7	4.6	4.7	68.9	68.4	68.7	4.4	4.4	4.4	4.2	5.6	5.8	5.7	5.5	
					Bottom	27.2	27.1	27.2	26.7	26.6	26.7	4.7	4.7	4.7	69.1	69.5	69.3	4.7	4.7	4.7		5.6	6.0	5.8		
					Surface	27.4	27.5	27.5	26.2	26.3	26.3	4.8	4.8	4.8	71.2	71.0	71.1	3.8	3.9	3.8		5.8	6.0	5.9		
S2	1855-1911	10.2	W	0.2	Middle	27.3	27.3	27.3	26.5	26.4	26.5	4.8	4.7	4.8	70.5	69.7	70.1	4.1	4.1	4.1	4.2	6.3	6.5	6.4	6.4	
					Bottom	27.3	27.2	27.3	26.5	26.6	26.6	4.7	4.7	4.7	68.7	69.2	69.0	4.6	4.6	4.6		6.8	6.8	6.8		
					Surface	27.4	27.5	27.5	26.2	26.2	26.2	4.4	4.4	4.4	65.2	64.9	65.1	3.6	3.5	3.6		5.2	5.6	5.4		
G2	1916-1933	13.4	W	0.3	Middle	27.3	27.3	27.3	26.4	26.4	26.4	4.5	4.5	4.5	66.4	66.6	66.5	4.0	4.0	4.0	4.0	6.0	6.1	6.1	6.0	
					Bottom	27.1	27.2	27.2	26.4	26.4	26.4	4.5	4.4	4.4	65.6	65.1	65.4	4.5	4.6	4.6		6.8	6.4	6.6		
					Surface	27.4	27.4	27.4	26.3	26.3	26.3	4.5	4.5	4.5	66.2	66.7	66.5	3.6	3.6	3.6		5.6	5.5	5.6		
S3	1938-1955	10.8	W	0.2	Middle	27.2	27.3	27.3	26.4	26.3	26.4	4.6	4.5	4.5	67.3	66.8	67.1	4.1	4.0	4.1	4.0	6.3	6.4	6.4	6.2	
					Bottom	27.2	27.2	27.2	26.4	26.4	26.4	4.5	4.4	4.4	65.7	65.3	65.5	4.4	4.4	4.4		6.4	6.8	6.6		

Annex D4 Baseline Water Quality Monitoring Results during Mid-Ebb Tide for 31 August 2012

Date:	31-Aug-12
Tide:	Mid-Ebb
Weather:	Cloudy
Sea Conditions:	Small Wave
Zone	A

Lasatian	Sampling Water Current Current spee		Current speed	Current speed	Monitoring	Temp	perratu	re (°C)		Salinit (ppt)	y		DO (mg/l)	1	DO	Satura (%)	ation		Turl (N	bidity TU)		Su	ispend (m	led Soli Ig/l)	ids
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	27.5	27.4	27.5	26.1	26.2	26.2	5.1	5.1	5.1	74.5	75.2	74.9	3.1	3.0	3.1		4.6	4.3	4.5	
C1	1030-1052	38.2	E	0.5	Middle	27.2	27.2	27.2	26.7	26.6	26.7	4.9	4.9	4.9	72.1	72.7	72.4	2.5	2.6	2.5	2.9	3.9	3.7	3.8	4.2
					Bottom	27.1	27.1	27.1	27.0	26.9	27.0	4.7	4.7	4.7	69.4	70.2	69.8	3.2	3.2	3.2		4.2	4.3	4.3	
					Surface	27.4	27.4	27.4	26.5	26.4	26.5	5.0	4.9	5.0	73.5	72.6	73.1	2.1	2.2	2.1		3.2	3.3	3.3	
E8	1057-1117	19.6	E	0.3	Middle	27.3	27.2	27.3	26.2	26.2	26.2	4.7	4.7	4.7	69.5	69.9	69.7	2.1	2.1	2.1	2.2	3.1	3.5	3.3	3.3
					Bottom	27.0	27.0	27.0	26.6	26.5	26.6	4.6	4.6	4.6	67.9	67.3	67.6	2.5	2.4	2.4		3.4	3.3	3.4	
					Surface	27.7	27.8	27.8	26.2	26.3	26.3	5.6	5.5	5.6	83.2	81.3	82.3	1.5	1.6	1.6		2.6	2.8	2.7	
S1	1121-1137	9.2	E	0.2	Middle	27.6	27.6	27.6	26.5	26.6	26.6	5.6	5.6	5.6	82.3	82.8	82.6	1.8	2.0	1.9	1.7	2.8	2.9	2.9	2.7
					Bottom	27.4	27.4	27.4	26.7	26.7	26.7	5.6	5.5	5.5	82.1	81.1	81.6	1.5	1.6	1.5		2.7	2.3	2.5	
					Surface	27.4	27.3	27.4	26.0	26.0	26.0	6.1	6.1	6.1	90.6	90.4	90.5	2.8	2.8	2.8		3.8	3.7	3.8	
G1	1151-1207	10.8	E	0.2	Middle	27.4	27.4	27.4	26.3	26.3	26.3	5.6	5.5	5.6	82.3	81.7	82.0	2.4	2.4	2.4	2.5	3.6	3.3	3.5	3.6
					Bottom	27.1	27.1	27.1	26.7	26.7	26.7	5.1	5.0	5.1	75.2	74.6	74.9	2.3	2.3	2.3		3.5	3.6	3.6	
					Surface	27.6	27.5	27.6	26.5	26.4	26.5	5.5	5.5	5.5	80.4	80.7	80.6	2.1	2.1	2.1		3.4	3.5	3.5	
E7	E7 1217-1234	12.4	E	0.1	Middle	27.4	27.3	27.4	26.3	26.2	26.3	5.1	5.1	5.1	74.9	74.6	74.8	2.4	2.3	2.3	3.0	3.8	3.6	3.7	4.6
					Bottom	27.3	27.3	27.3	26.4	26.3	26.4	5.0	5.0	5.0	73.9	73.3	73.6	4.6	4.6	4.6		6.6	6.7	6.7	
			_		Surface	27.7	27.7	27.7	26.4	26.5	26.5	5.8	5.8	5.8	85.8	85.7	85.8	2.2	2.1	2.1		4.0	3.7	3.9	
F1	1239-1254	11.6	E	0.5	Middle	27.5	27.4	27.5	26.5	26.5	26.5	5.6	5.5	5.6	82.2	81.9	82.1	2.0	2.0	2.0	1.9	3.3	3.7	3.5	3.3
					Bottom	27.2	27.2	27.2	26.9	26.8	26.9	5.1	5.1	5.1	75.8	75.0	75.4	1.6	1.6	1.6		2.8	2.5	2.7	
			_		Surface	27.9	27.8	27.9	26.3	26.4	26.4	5.3	5.2	5.2	77.6	76.6	77.1	2.9	2.8	2.8		3.9	3.6	3.8	
G3	1300-1318	15.2	E	0.2	Middle	27.5	27.5	27.5	26.5	26.6	26.6	4.9	5.0	4.9	72.6	73.5	73.1	2.8	2.8	2.8	2.9	3.8	3.6	3.7	4.2
					Bottom	27.3	27.3	27.3	26.7	26.8	26.8	4.9	4.9	4.9	72.1	72.7	72.4	3.2	3.1	3.1		5.3	5.2	5.3	<u> </u>
=-		10.0	_		Surface	27.6	27.5	27.6	26.4	26.5	26.5	4.8	4.7	4.8	70.7	69.6	70.2	3.6	3.6	3.6		5.8	5.2	5.5	
E9	1328-1349	18.6	E	0.1	Middle	27.4	27.3	27.4	26.3	26.4	26.4	4.6	4.6	4.6	67.7	68.4	68.1	4.7	4.6	4.6	4.4	6.4	6.6	6.5	6.2
					Bottom	27.2	27.2	27.2	26.3	26.4	26.4	4.7	4.7	4.7	69.7	69.1	69.4	4.9	5.0	4.9		6.9	6.5	6.7	
60	1050 1410	0.0	_	0.0	Surface	27.7	27.6	27.7	26.4	26.4	26.4	4.7	4.8	4.7	69.0	70.1	69.6	3.9	3.9	3.9		4.9	5.0	5.0	5.0
52	1353-1410	9.9	E	0.2	Middle	27.4	27.4	27.4	26.5	26.5	26.5	4.7	4.6	4.6	68.9	68.1	68.5	4.5	4.5	4.5	4.4	6.4	6.6	6.5	5.8
					Bottom	27.3	27.2	27.3	26.5	26.6	26.6	4.8	4.8	4.8	70.3	70.6	70.5	4.8	4.9	4.8		5.8	6.0	5.9	
C 0	1 11 7 1 100	10.0	-	0.0	Surface	27.7	27.7	27.7	26.3	26.3	26.3	4.3	4.3	4.3	63.1	63.9	63.5	3.7	3.8	3.8	10	4.8	5.0	4.9	
62	1417-1430	12.8	E	0.2	Nilaale	27.5	27.5	27.5	26.3	26.4	26.4	4.4	4.4	4.4	65.2	64.9	65.1	4.3	4.4	4.4	4.3	5.8	5.4	5.6	5.7
					Bottom	27.2	27.2	27.2	26.4	26.4	26.4	4.4	4.5	4.4	65.7	65.9	65.8	4.9	4.8	4.8		6.4	6.5	6.5	
	1400 1450	10.4	_	0.1	Surrace	27.8	27.7	27.8	26.2	26.3	26.3	4.3	4.3	4.3	63.7	63.9	63.8	3.7	3.7	3.7	10	5.8	5.9	5.9	
53	1430-1452	10.4	E	0.1	Nilaale	27.6	27.5	27.6	26.3	26.4	26.4	4.4	4.5	4.4	65.0	65.8	65.4	4.2	4.2	4.2	4.2	6.3	6.0	6.2	6.1
L					Bottom	27.4	27.3	27.4	26.5	26.5	26.5	4.4	4.4	4.4	65.0	64.4	64.7	4.6	4.7	4.6		6.2	6.4	6.3	

Annex D5 Baseline Water Quality Monitoring Results during Mid-Flood Tide for 3 September 2012

Date:	3-Sep-12								
Tide:	Mid-Flood								
Weather:	Fine								
Sea Conditions:	Small Wave								
Zone	A								

	Sampling Water Current Current spee		Current speed	Monitoring	Temperrature (°C)				Salinit	у		DO (mg/l)		DO	Satura (%)	ition	Turbidity (NTU)				Suspended Solids (mg/l)				
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	28.2	28.1	28.2	25.8	25.8	25.8	5.1	5.0	5.0	75.2	73.6	74.4	2.9	2.9	2.9		4.0	3.8	3.9	
C1	1630-1652	38.5	w	0.4	Middle	27.7	27.6	27.7	26.3	26.3	26.3	4.8	4.8	4.8	71.7	70.9	71.3	3.0	3.0	3.0	3.0	4.0	4.0	4.0	4.1
					Bottom	27.0	27.1	27.1	26.9	30.1	28.5	4.4	4.3	4.4	64.7	64.1	64.4	3.1	3.1	3.1		4.3	4.5	4.4	
					Surface	28.1	28.2	28.2	25.8	25.7	25.8	4.9	4.9	4.9	72.2	72.8	72.5	2.0	2.0	2.0		2.9	3.0	3.0	
E8	1658-1717	19.9	W	0.4	Middle	27.6	27.8	27.7	26.2	26.2	26.2	4.7	4.8	4.7	69.6	70.6	70.1	2.1	2.1	2.1	2.2	3.2	3.5	3.4	3.4
					Bottom	27.4	27.3	27.4	26.8	26.7	26.8	4.6	4.6	4.6	67.5	68.1	67.8	2.2	3.0	2.6		3.7	4.0	3.9	
					Surface	28.1	28.2	28.2	26.0	26.1	26.1	4.9	5.0	4.9	72.8	73.1	73.0	1.7	1.7	1.7		3.0	2.8.	3.0	
S1	1720-1737	10.9	W	0.4	Middle	27.9	27.8	27.9	26.5	26.5	26.5	4.8	4.8	4.8	70.9	70.6	70.8	1.9	1.9	1.9	1.8	3.2	3.1	3.2	3.2
					Bottom	27.6	27.7	27.7	26.8	26.9	26.9	4.7	4.7	4.7	68.7	69.1	68.9	2.0	1.9	1.9		3.4	3.2	3.3	
					Surface	28.3	28.2	28.3	25.5	25.6	25.6	5.3	5.4	5.3	78.3	79.5	78.9	2.8	2.8	2.8		4.6	4.6	4.6	
G1	1750-1807	11.1	W	0.2	Middle	27.8	27.8	27.8	26.0	26.1	26.1	5.1	5.1	5.1	75.3	75.2	75.3	3.0	2.9	2.9	2.9	5.0	5.2	5.1	5.1
					Bottom	27.6	27.6	27.6	26.3	26.4	26.4	4.8	4.8	4.8	70.3	70.8	70.6	3.1	3.1	3.1		5.4	5.5	5.5	
					Surface	28.1	28.2	28.2	25.6	25.5	25.6	5.2	5.2	5.2	77.1	76.5	76.8	2.0	2.0	2.0		3.1	3.1	3.1	
E7	1817-1834 12.7 W 0.2	0.2	Middle	27.8	27.8	27.8	26.1	25.9	26.0	5.1	5.0	5.0	74.6	74.3	74.5	2.1	2.1	2.1	2.3	3.8	3.7	3.8	3.7		
					Bottom	27.2	27.2	27.2	26.4	26.4	26.4	4.9	4.9	4.9	71.9	71.7	71.8	2.6	2.6	2.6		4.3	4.3	4.3	
					Surface	28.1	28.0	28.1	25.4	25.5	25.5	5.0	5.0	5.0	74.3	74.0	74.2	2.0	2.0	2.0		3.4	3.6	3.5	
F1	1839-1854	12.6	W	0.5	Middle	27.6	27.5	27.6	26.3	26.3	26.3	4.9	4.8	4.9	72.4	71.3	71.9	2.3	2.3	2.3	2.3	3.6	3.6	3.6	3.7
					Bottom	27.3	27.2	27.3	26.6	26.6	26.6	4.6	4.6	4.6	67.9	68.2	68.1	2.5	2.5	2.5		4.1	3.8	4.0	
					Surface	28.1	28.0	28.1	25.5	25.5	25.5	5.0	5.0	5.0	74.4	74.3	74.4	2.3	2.3	2.3		3.8	3.8	3.8	
G3	1900-1920	16.4	W	0.2	Middle	27.7	27.7	27.7	26.1	25.9	26.0	4.9	4.9	4.9	72.5	72.0	72.3	2.6	2.6	2.6	2.6	4.8	4.6	4.7	4.3
					Bottom	27.2	27.3	27.3	26.4	26.4	26.4	4.8	4.7	4.7	70.2	69.6	69.9	2.8	2.8	2.8		4.5	4.5	4.5	
					Surface	28.1	28.0	28.1	25.5	25.6	25.6	5.1	5.1	5.1	75.0	75.2	75.1	3.4	3.3	3.3		5.2	5.1	5.2	
E9	1930-1950	19.5	W	0.1	Middle	27.6	27.6	27.6	25.7	25.8	25.8	4.9	4.9	4.9	72.4	71.9	72.2	3.9	3.9	3.9	3.9	6.3	6.4	6.4	6.1
					Bottom	27.0	27.1	27.1	26.3	26.4	26.4	4.7	4.7	4.7	68.8	69.1	69.0	4.6	4.5	4.5		6.7	6.9	6.8	
					Surface	27.9	27.9	27.9	25.6	25.7	25.7	5.0	5.0	5.0	74.4	74.1	74.3	3.4	3.4	3.4		5.2	5.4	5.3	
S2	1955-2011	10.0	W	0.2	Middle	27.5	27.6	27.6	26.2	26.3	26.3	4.8	4.8	4.8	70.3	70.2	70.3	3.9	3.8	3.8	3.7	6.2	6.3	6.3	5.9
					Bottom	27.2	27.1	27.2	26.5	26.6	26.6	4.7	4.6	4.6	68.8	68.2	68.5	4.0	4.0	4.0		6.0	6.4	6.2	
					Surface	28.1	28.0	28.1	25.7	25.6	25.7	5.1	5.1	5.1	75.0	74.7	74.9	3.4	3.4	3.4		5.1	4.9	5.0	
G2	2016-2034	13.3	W	0.3	Middle	27.8	27.8	27.8	25.9	26.0	26.0	4.8	4.9	4.8	71.2	71.6	71.4	3.6	3.6	3.6	3.6	5.3	5.1	5.2	5.4
L					Bottom	27.3	27.4	27.4	26.3	26.4	26.4	4.7	4.6	4.7	69.1	68.5	68.8	3.9	3.9	3.9		5.8	5.9	5.9	
					Surface	28.1	27.9	28.0	25.6	25.7	25.7	5.0	5.0	5.0	73.7	74.3	74.0	3.3	3.3	3.3		5.0	5.0	5.0	
S3	2038-2055	10.6	W	0.2	Middle	27.9	27.8	27.9	25.9	25.9	25.9	4.8	4.9	4.8	71.3	71.8	71.6	3.4	3.5	3.4	3.5	5.5	5.3	5.4	5.3
					Bottom	27.4	27.3	27.4	26.4	26.3	26.4	4.6	4.6	4.6	67.4	68.0	67.7	3.7	3.7	3.7		5.6	5.6	5.6	

Remark or Obsevation:

Note: * Average

Annex D6 Baseline Water Quality Monitoring Results during Mid-Ebb Tide for 3 September 2012

Date:	3-Sep-12
Tide:	Mid-Ebb
Weather:	Fine
Sea Conditions:	Small Wave
Zone	A

Sampling Wa		Water	Current	Current speed	Monitorina	Temp	erratu	re (°C)		Salinit (ppt)	у		DO (mg/l)		DO	Satura (%)	ation		Turi (N	oidity TU)		Su	ispend (m	led Sol Ig/l)	ids
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	28.2	28.3	28.3	25.6	25.6	25.6	5.0	4.9	5.0	73.9	72.9	73.4	2.9	2.9	2.9		5.0	4.8	4.9	
C1	1100-1123	37.4	Е	0.3	Middle	27.8	27.7	27.8	26.3	26.3	26.3	4.8	4.8	4.8	70.9	70.4	70.7	2.7	2.7	2.7	2.9	4.3	4.4	4.4	4.8
					Bottom	27.3	27.2	27.3	27.0	27.0	27.0	4.7	4.7	4.7	68.8	69.3	69.1	3.1	3.1	3.1		5.0	5.2	5.1	
					Surface	28.3	28.2	28.3	26.1	26.1	26.1	5.0	4.9	5.0	73.7	72.7	73.2	1.9	1.9	1.9		3.3	3.2	3.3	
E8	1127-1148	19.8	E	0.2	Middle	28.1	28.0	28.1	26.5	26.4	26.5	4.9	4.8	4.8	71.8	70.8	71.3	2.0	2.1	2.1	2.0	3.2	3.2	3.2	3.4
					Bottom	27.7	27.7	27.7	26.8	26.8	26.8	4.7	4.7	4.7	69.0	70.0	69.5	2.3	2.2	2.2		3.7	3.5	3.6	
					Surface	28.4	28.3	28.4	26.2	26.2	26.2	4.9	5.0	4.9	72.1	73.3	72.7	1.7	1.7	1.7		2.8	2.8	2.8	
S1	1152-1210	10.2	E	0.2	Middle	28.2	28.1	28.2	26.6	26.5	26.6	4.8	4.8	4.8	70.9	71.4	71.2	1.8	1.8	1.8	1.8	2.9	2.9	2.9	3.0
					Bottom	28.0	27.9	28.0	26.7	26.8	26.8	4.7	4.8	4.7	69.8	70.3	70.1	2.0	1.9	1.9		3.4	3.2	3.3	
					Surface	28.4	28.3	28.4	25.7	25.7	25.7	5.1	5.2	5.1	75.2	76.2	75.7	2.9	2.9	2.9		5.1	5.1	5.1	
G1	1223-1240	10.8	E	0.3	Middle	28.1	28.1	28.1	26.0	26.0	26.0	5.1	5.0	5.0	74.6	74.2	74.4	3.1	3.0	3.0	3.0	5.4	5.2	5.3	5.1
					Bottom	27.8	27.8	27.8	26.2	26.3	26.3	4.7	4.7	4.7	68.9	69.7	69.3	3.2	3.2	3.2		5.0	5.0	5.0	
					Surface	28.3	28.4	28.4	25.9	26.0	26.0	5.1	5.1	5.1	74.9	74.5	74.7	1.9	1.9	1.9		3.0	3.4	3.2	
E7	E7 1249-1306	12.4	E	0.2	Middle	28.0	28.0	28.0	26.3	26.3	26.3	5.0	4.9	5.0	73.5	72.6	73.1	2.1	2.1	2.1	2.4	3.6	3.8	3.7	4.0
					Bottom	27.6	27.7	27.7	26.5	26.5	26.5	4.8	4.8	4.8	70.4	70.7	70.6	3.0	3.1	3.1		4.9	5.0	5.0	
					Surface	28.3	28.3	28.3	26.0	26.0	26.0	5.0	4.9	5.0	73.8	73.0	73.4	1.9	1.8	1.8		2.8	2.9	2.9	
F1	1310-1325	11.6	E	0.4	Middle	28.1	28.1	28.1	26.3	26.3	26.3	4.8	4.9	4.8	71.1	71.7	71.4	2.0	1.9	1.9	1.9	3.3	3.4	3.4	3.3
					Bottom	27.9	27.9	27.9	26.5	26.5	26.5	4.7	4.7	4.7	69.9	69.2	69.6	2.0	2.1	2.1		3.4	3.7	3.6	
					Surface	28.4	28.4	28.4	25.9	25.9	25.9	5.0	5.0	5.0	74.3	73.6	74.0	2.5	2.6	2.6		4.0	4.0	4.0	
G3	1330-1348	15.4	E	0.3	Middle	28.1	28.0	28.1	26.2	26.3	26.3	4.9	4.9	4.9	72.7	72.2	72.5	2.6	2.6	2.6	2.7	4.2	4.4	4.3	4.3
					Bottom	27.8	27.7	27.8	26.5	26.6	26.6	4.7	4.7	4.7	69.5	69.8	69.7	2.8	2.9	2.9		4.6	4.8	4.7	
					Surface	28.4	28.4	28.4	25.6	25.5	25.6	4.9	5.0	5.0	72.9	73.5	73.2	3.4	3.5	3.4		5.2	5.3	5.3	
E9	1358-1418	18.8	E	0.2	Middle	28.0	28.0	28.0	25.9	26.0	26.0	4.8	4.8	4.8	71.0	70.5	70.8	4.0	4.0	4.0	4.0	6.1	5.9	6.0	6.0
					Bottom	27.8	27.7	27.8	26.3	26.4	26.4	4.6	4.6	4.6	67.2	67.6	67.4	4.6	4.5	4.5		6.8	6.5	6.7	
			_		Surface	28.4	28.3	28.4	25.9	25.8	25.9	4.9	4.9	4.9	71.8	72.3	72.1	3.5	3.5	3.5		5.2	4.9	5.1	
S2	1422-1436	9.6	E	0.2	Middle	28.1	28.0	28.1	26.3	26.2	26.3	4.7	4.7	4.7	69.4	69.8	69.6	3.9	3.9	3.9	3.8	5.9	5.9	5.9	5.8
					Bottom	27.8	27.8	27.8	26.6	26.6	26.6	4.5	4.6	4.5	66.6	67.4	67.0	4.1	4.1	4.1		6.4	6.2	6.3	
					Surface	28.4	28.3	28.4	25.9	25.8	25.9	4.9	5.0	4.9	72.7	73.1	72.9	3.5	3.5	3.5		5.1	5.2	5.2	
G2	1440-1456	12.8	E	0.3	Middle	28.1	28.0	28.1	26.1	26.1	26.1	4.8	4.8	4.8	70.6	70.3	70.5	3.6	3.7	3.7	3.7	5.2	5.5	5.4	5.5
					Bottom	27.7	27.6	27.7	26.4	26.5	26.5	4.6	4.5	4.6	67.9	67.1	67.5	3.9	3.9	3.9		6.2	5.9	6.1	
					Surface	28.3	28.4	28.4	25.9	25.8	25.9	4.8	4.9	4.9	71.5	72.4	72.0	3.4	3.4	3.4		5.0	5.1	5.1	
S3	1500-1516	10.2	E	0.3	Middle	28.1	28.1	28.1	26.0	25.9	26.0	4.8	4.7	4.7	70.6	69.5	70.1	3.5	3.5	3.5	3.6	5.4	5.5	5.5	5.4
					Bottom	27.8	27.8	27.8	26.4	26.4	26.4	4.5	4.6	4.5	66.8	67.8	67.3	3.9	3.8	3.8		5.6	6.0	5.8	

Remark or Obsevation:

Note: * Average

ERM has over 140 offices Across the following countries worldwide

Argentina	New Zealand
Australia	Panama
Belgium	Peru
Brazil	Poland
Canada	Portugal
China	Puerto Rico
Colombia	Romania
France	Russia
Germany	Singapore
Hong Kong	South Africa
Hungary	Spain
India	Sweden
Indonesia	Taiwan
Ireland	Thailand
Italy	The Netherlands
Japan	United Arab Emirates
Kazakhstan	United Kingdom
Korea	United States
Malaysia	Vietnam
Mexico	

Environmental Resources Management

16/F DCH Commercial Centre 25 Westlands Road Quarry Bay, Hong Kong

T: 2271 3000 F: 2723 5660

www.erm.com